Route planning of heterogeneous unmanned aerial vehicles under recharging and mission time with carrying payload constraints

Author:

Phalapanyakoon KriangsakORCID,Siripongwutikorn PeeraponORCID

Abstract

Purpose: We consider the problem of route planning of multiple rechargeable heterogeneous UAVs with multiple trips under mission time and payload carrying constraints. The goal is to determine the types and number of UAVs to be deployed and their flying paths that minimizes the monetary cost, which is a sum of the recharging energy cost of each UAV, the UAV rental cost, and the cost of violating the mission time deadline.Design/methodology/approach: The problem is formulated as a mixed integer programming (MIP). Then, the genetic algorithm (GA) is developed to solve the model and the solutions are compared to those obtained from the exact method (Branch-and-Bound). Novel chromosome encoding and population initializations are designed, and standard procedures for crossover and mutation are adapted to this work. Test problems on grid networks and real terrains are used to evaluate the runtime efficiency and solution optimality, and the sensitivity of GA parameters is studied based on two-level factorial experiments.Findings: The proposed GA method can find optimal solutions for small problem sizes but with much less computation time than the exact method. For larger problem sizes, the exact method failed to find optimal solutions within the limits of time and disk space constraints (24 hours and 500 GB) while the GA method yields the solutions within a few minutes with as high as 49% better objective values. Also, the proposed GA method is shown to well explore the solution space based on the variation of the total costs obtained.Originality/value: The unique aspects of this work are that the model optimizes the sum of three different costs – the electricity recharging cost, the UAV rental cost, the penalty cost for mission deadline violation, and the recharging period based on the remaining energy, the payload capacity, and the heterogeneity of UAVs are incorporated into the model. The model is formulated as a mixed integer programming and the genetic algorithm is developed to solve the program. Novel chromosome encoding and population initializations are designed, and standard procedures for crossover and mutation are adapted to this work.

Publisher

Omnia Publisher SL

Subject

Industrial and Manufacturing Engineering,Strategy and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3