Emotion recognition in images and artificial immune systems

Author:

Нуриахметов А.И.,Богданова Д.Р.

Abstract

В статье приведены результаты применения одного из методов искусственных иммунных систем к задаче распознавания эмоций человека по его мимике на изображениях. Искусственные иммунные системы – специальная концепция, в основе которой лежат различные принципы естественной иммунной системы млекопитающих. За счет своего разнообразия, подобным системам удалось достигнуть высоких результатов во множестве различных задач. Поэтому весьма интересным является вопрос об их эффективности в такой задаче, как распознавание эмоций. Так, в данном исследовании, используя один из методов искусственных иммунных систем, удалось достигнуть максимальной точности в 80 % для задачи распознавания 7 базовых эмоций Пола Экмана. Эти показатели были достигнуты на наборе данных Cohn–Kanade+. Для построения подобной системы, в исследовательской работе были рассмотрены наиболее популярные подходы к распознаванию эмоций на изображениях, а также ключевые концепции типизации эмоций. В предлагаемой модели использовался подход на основе компьютерного зрения, с использованием лицевой разметки по 68 точкам. Полученные координаты точек лица были преобразованы в 136 вещественных признаков, а затем, их число было сокращено до 25 признаков при помощи метода главных компонент. Дальнейшим направлением исследования будет являться поиск наиболее эффективного метода из класса методов искусственных иммунных систем для задачи распознавания эмоций на изображениях. This research paper presents the results of applying a method of artificial immune systems to the problem of recognizing human emotions by facial expressions in images. Artificial immune systems are a special concept based on a different principles of the natural immune system in mammals. Due to their diversity, artificial immune systems have managed to achieve high results in many different tasks. Therefore, the question of their effectiveness in such tasks as the problem of emotions recognition is very interesting. In this study, using a method of artificial immune systems, it was possible to achieve a maximum accuracy of 80% for the task of recognizing Paul’s Ekman 7 basic emotions. These metrics were achieved on the Cohn–Kanade+ dataset. To build such a system, the research work considered the most popular approaches of recognizing emotions in images along with the key concepts of emotion classification. In the proposed model, a computer vision-based approach was utilised using 68-point facial landmarks. The obtained coordinates of the points on the face were transformed into 136 real features, and then, their number was reduced to 25 features with the means of principal components method. A further direction of research will be the search for the most effective method of artificial immune systems for emotion recognition in images.

Publisher

Voronezh Institute of High Technologies

Reference21 articles.

1. Нуриахметов А. И., Богданова Д. Р. Искусственные иммунные системы и распознавание эмоций. Оригинальные исследования. 2020;10(12):174-184. Доступно по: https://ores.su/ru/journals/oris-jrn/2020-oris-12-2020/a230163. (дата обращения: 15.03.2021)

2. Lindquist K. A., Siegel E. H., Quigley K. S., Barrett L. F. The hundred-year emotion war: are emotions natural kinds or psychological constructions? Comment on Lench, Flores, and Bench (2011). 2013. DOI: 10.1037/a0029038

3. Wundt W. M., Judd C. H. Outlines of psychology. Engelmann. 1902.

4. Russell J. A. A circumplex model of affect. Journal of personality and social psychology. 1980;39(6):1161. DOI: 10.1037/h0077714

5. Jack R. E., Garrod O. G. B., Schyns P. G. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current biology. 2014;24(2):187-192. DOI:10.1016/j.cub.2013.11.064

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3