Estimación de Cosecha de Maíz Forrajero (Zea mays L.) Mediante Índices Espectrales Derivados de LANDSAT-8 y SENTINEL-2

Author:

Cano-Mejía BonifacioORCID,Valdez-Cepeda Ricardo D.ORCID,López-Santos ArmandoORCID

Abstract

La estimación de cosecha basada en índices espectrales conforma un elemento de decisión importante para quienes participan en la actividad agrícola; sin embargo, muchas interrogantes sobre su utilidad aún persisten. Los objetivos de esta investigación fueron: 1) relacionar propiedades radiativas del maíz forrajero (MF) y producción de biomasa mediante imágenes LANDSAT-8 y SENTINEL-2; y 2) seleccionar el índice de vegetación (IV) con mejor desempeño que permita modelar el rendimiento del MF para condiciones similares. El estudio se realizó en el ciclo PV-2019 con mediciones morfológicas en distintas etapas de crecimiento del MF y mediante muestreos aleatorios destructivos a los 72 dds para determinar magnitud de biomasa en laboratorio; los datos de biomasa se relacionaron con valores de reflectancia e IV de LANDAT-8 y SENTINEL-2 para estimar rendimiento mediante regresión lineal múltiple; ocho IV (NDVI, TVI TTVI, RDVI, RVI, RATIO, SAVI, MSAVI2) se evaluaron mediante evaluaciones cruzadas con base en estadísticos clave. Los resultados del análisis de regresión múltiple indicaron que el mejor modelo (R2 = 0.66) se obtuvo con datos de imágenes SENTINEL-2 a partir de las bandas 3 (α3 = 0.54-0.57 µm) y 8 (α8= 0.78-0.90 µm) con estimadores βi muy significativos (P < 0.05); RDVI presentó el mejor desempeño debido a una buena relación espacial entre los valores digitales ráster y la producción de biomasa verde producida con una asociación del 75.41%; en tanto que los indicadores estadísticos fueron R2= 0.75 y CME=17; con ambos recursos (Modelos de Regresión Múltiple e IV) se pronosticó el rendimiento a los 72 dds en un rango de 10.7 – 57.01 Mg ha-1. La conclusión es que SENTINEL-2 superó a LANDSAT-8 como herramienta libre para la evaluación de cultivos y estimación de biomasa debido a una mejor resolución espacial y temporal.

Publisher

Sociedad Mexicana de la Ciencia del Suelo A.C.

Subject

Pollution,Soil Science,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3