Influence of preliminary thermal aging on the residual interlayer strength and staging of damage accumulation in structural carbon plastic

Author:

Lobanov D. S,Lunegova E. M,Mugatarov A. I

Abstract

Aging of composites is a pervasive problem that leads to mechanical properties degradation, reduced design life of a structure and premature accidental failure. The work is devoted to an experimental study of the preliminary temperature aging effect on the residual mechanical properties of structural CFRP. The joint use of test systems and systems for registration and analysis of acoustic emission signals was applied. The Short Beam Shear Test of CFRP specimens were carried out using the short beam method. The tests were carried out on universal electromechanical systems Instron 5882 and Instron 5965 in accordance with the recommendations of ASTM D2344. In the process of loading the samples were continuously recorded by using the acoustic emission signals system AMSY-6. A piezoelectric sensor with a frequency range of 300-800 kHz was used. The test and diagnostic systems were synchronized during the tests. In the course of the work the values of the interlayer shear strength were determined for the samples of CFRP. Typical types of the sample destruction are illustrated. When analyzing the change in the mechanical properties of the carbon fiber reinforced plastic from a temperature increase the critical values of temperatures were established in which a sharp decline in the strength and elastic characteristics of materials occurs due to an active destruction of the binder. The graphs of the energy parameter dependence and frequency characteristics of acoustic emission signals on time have been constructed and analyzed. The estimate of the processes of damage accumulation in composites is carried out. The change of the damage accumulation mechanisms was illustrated. The obtained results illustrate the effect of elevated temperatures and the duration of their impact on the mechanical behavior of structural CFRP specimens during the static tests for the interlayer shear.

Publisher

PNRPU Publishing House

Subject

Mechanics of Materials,Materials Science (miscellaneous),Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3