Modelling of S. cerevisiae and T. delbrueckii pure culture fermentation in synthetic media using a compartmental nitrogen model

Author:

BROU Paul,Patricia Taillandier,Beaufort Sandra,Brandam Cédric

Abstract

Aim: The objective of the present work is to propose a model describing the evolution of the pure culture fermentation of two oenological yeasts: S. cerevisiae and T. delbrueckii.Methods and results: For both yeasts, pure culture fermentation was performed in a synthetic medium with different initial concentrations of yeast available nitrogen. The datasets obtained from those experiments were used to identify the parameters of the proposed model.Conclusions: The developed comprehensive model of wine-making fermentation is based on the partition of assimilated nitrogen between the constitutive and the storage compartments. It efficiently describes the evolution of S. cerevisiae and T. delbrueckii pure cultures. This mass-balance model provides a stoichiometric approach in biomass production, unlike nitrogen backboned models used in winemaking. Moreover, it gives an estimation of non-accessed data such as nitrogen partition between vacuole and cytosol during T. delbrueckii fermentation.Significance and impact of the study: The developed model is robust enough to precisely describe the fermentation evolution of two pure culture yeasts and therefore has future potential for modelling mixed culture fermentations of S. cerevisiae and T. delbrueckii.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3