Inactivation of Brettanomyces bruxellensis and Saccharomyces cerevisiae in dry and sweet wines by high hydrostatic pressure

Author:

Tomašević Marina,Križanović Stela,Ježek Damir,Ćurko Natka,Lukić Katarina,Kovačević Ganić Karin

Abstract

The aim of the research was to investigate a potential application of high hydrostatic pressure (HHP) for reduction/elimination of Brettanomyces bruxellensis and Saccharomyces cerevisiae in wines. Dry red wine was inoculated with B. bruxellensis and sweet white wine was inoculated with S. cerevisiae yeast. Both wines were treated by HHP under 100 and 200 MPa for 1, 3, 5, 15 and 25 min. The culturability was determined immediately after the treatment and again after 30, 60 and 90 days of storage. The phenolic content and chromatic characteristics were evaluated spectrophotometrically immediately after the treatment and after 90 days of storage. The culturability of B. bruxellensis was not confirmed immediately after the most invasive treatment (200 MPa for 15 and 25 min). With the same parameters, only a decrease in the culturability of S. cerevisiae was observed. During storage, opposing results were observed for two yeasts treated with 200 MPa for 15 and 25 min: there was a complete reduction of S. cerevisiae in the wine treated, but the culturability of B. bruxellensis completely recovered in all wines, implying that B. bruxellensis yeast entered a viable but not culturable (VBNC) state after HHP exposure. Regarding the chemical analyses, applied process parameters induced a slight decrease of anthocyanins in red wine, while changes of total phenolics and total colour difference value were negligible. In conclusion, HHP could potentially be successful for microbial stabilisation of sweet wines and consequently assure a lower use of sulphur dioxide, while inactivation of B. bruxellensis could only be successful in the early stages of wine contamination.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3