Grapevine recovery after fire and a first look at rapid damage assessment with satellite imagery

Author:

Collins Cassandra,Ritchie MichaelaORCID,James Annette,O'Brien Patrick,Ma Saisai,De Bei Roberta,Clarke AndyORCID

Abstract

There is increasing scientific consensus that climate change is one of the underlying causes of the prolonged dry and hot conditions that have increased the risk of extreme fire weather inmany countries around the world. In December 2019, a bushfire occurred in the Adelaide Hills, South Australia, where 25,000 hectares were burnt, and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground-based measures. Correlations between ground visual fire damage assessments and postfire NDVI (-­0.347 to -0.084) and VARIgreen (-0.333 to 0.074) satellite imagery were significant but showed no correlation to a weak negative correlation. Canopy growth, vine fertility and starch concentrations were tracked in the two seasons following the fire event to assess vine recovery. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower starch concentrations in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor-moderate damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate change impacts and adaptations of wine production;Nature Reviews Earth & Environment;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3