The sugarless grape trait characterised by single berry phenotyping

Author:

Bigard Antoine,Romieu CharlesORCID,Ojeda Hernán,Torregrosa Laurent Jean-MarieORCID

Abstract

In grape production, the selection of varieties well-adapted to climate fluctuations, especially warming, is based on achieving a balance between fruit sugars and acidity. In recent decades, temperature has been constantly rising during ripening causing excessive sugar concentrations and insufficient acidity in wine grapes in the warmest regions. There is thus an increasing interest in breeding new cultivars able to ripen at lower sugar concentration while preserving fruit acidity. However, the phenotyping of berry composition challenges both methodological and conceptual issues. Indeed, most authors predetermine either average harvest date, ripening duration, thermal time or even the hexoses concentration threshold itself to compare accessions at a hopefully similar ripe stage. In this study, we phenotyped the fruit development and composition of 6 genotypes, including 3 new disease-tolerant varieties known to produce wines with low alcoholic contents. The study was performed at single berry level from the end of the green growth stage to the end of phloem unloading, when water and solute contents reach a maximum per berry. The results confirm that sugarless genotypes achieve fruit ripening with 20-30 % less hexoses than the classical varieties, Grenache N and Merlot N, without impacting berry growth, total acidity or cation accumulation. The sugarless genotypes displayed a higher malic acid/tartaric acid balance than the other genotypes, but similar sucrose/H+ exchanges at the onset of ripening. Data suggest that the sugarless phenotype results from a specific plasticity in the relationship between growth and the turgor imposed by organic acid accumulation and sugar loading. This opens interesting perspectives for the understanding of the mechanism of grapevine berry growth and for breeding varieties that will cope better with climate warming.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3