A test-tube vinification method for high-throughput characterisation of the oenological and aromatic potential of white wines

Author:

Claudel Patricia,Dumas Vincent,Thibon Cécile,Lemarquis Grégory,Jaegli Nathalie,Sivsivadzé Ana,Baltenweck Raymonde,Hugueney Philippe,Duchêne Éric

Abstract

The quality of wine largely depends on aroma perception, but the genetic basis explaining the variations of aroma compound concentrations in wines is still fragmentary. To unravel links between genetic variations and aroma compound variations in hundreds of genotypes, we developed a small-scale, high-throughput test-tube vinification (TTV) method capable of producing white wines that reveal the genetic potential at the scale of a single vine stock. We evaluated this method on commercial grapevine varieties (Riesling, Gewurztraminer, Chardonnay, Chasselas, Floreal, Muscat à petits grains blancs) and genotypes resulting from a bi-parental cross, covering a wide aromatic palette. The wines produced were described by usual oenological parameters and GC-MS profiling of volatile compounds. We compared the wines obtained with the TTV method to commercial wines and to wines obtained from larger fermentation volumes (5–10 L). Our results show that the TTV method is suitable to produce white wines on a very small scale, i.e., less than 100 mL and that these small-scale wines faithfully reflect the aromatic potential of the different varieties, as would larger volume methods. The proposed method is a high-throughput approach to assess the oenological potential of hundreds of grapevine genotypes from grape material harvested on a single vine. This wine-focused direct phenotyping method will pave the way for a better understanding of the genetic determinism of wine aromas, especially for molecules that are not directly present in grapes, such as volatile thiols and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN).

Publisher

Universite de Bordeaux

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3