Use of remote sensing to understand the terroir of the Niagara Peninsula. Applications in a Riesling vineyard

Author:

Marciniak Matthieu,Brown Ralph,Reynolds Andrew,Jollineau Marilyne

Abstract

<p style="text-align: justify;"><strong>Aim:</strong> The purpose of this study was to determine if multispectral high spatial resolution airborne imagery could be used to segregate zones in vineyards to target fruit of highest quality for premium winemaking. We hypothesized that remotely sensed data would correlate with vine size and leaf water potential (ψ), as well as with yield and berry composition.</p><p style="text-align: justify;"><strong>Methods and results:</strong> Hypotheses were tested in a 10-ha Riesling vineyard [Thirty Bench Winemakers, Beamsville (Ontario)]. The vineyard was delineated using GPS and 519 vines were geo-referenced. Six sub-blocks were delineated for study. Four were identified based on vine canopy size (low, high) with remote sensing in 2005. Airborne images were collected with a four-band digital camera every 3-4 weeks over 3 seasons (2007-2009). Normalized difference vegetation index (NDVI) values (NDVI-red, green) and greenness ratio were calculated from the images. Single-leaf reflectance spectra were collected to compare vegetation indices (VIs) obtained from ground-based and airborne remote-sensing data. Soil moisture, leaf ψ, yield components, vine size, and fruit composition were also measured. Strong positive correlations were observed between VIs and vine size throughout the growing season. Vines with higher VIs during average to dry years had enhanced fruit maturity (higher °Brix and lower titratable acidity). Berry monoterpenes always had the same relationship with remote sensing variables regardless of weather conditions.</p><p style="text-align: justify;"><strong>Conclusions:</strong> Remote sensing images can assist in delineating vineyard zones where fruit will be of different maturity levels, or will have different concentrations of aroma compounds. Those zones could be considered as sub-blocks and processed separately to make wines that reflect those terroir differences. Strongest relationships between remotely sensed VIs and berry composition variables occurred when images were taken around veraison.</p><strong>Significance and impact of the study:</strong> Remote sensing may be effective to quantify spatial variation in grape flavour potential within vineyards, in addition to characteristics such as water status, yield, and vine size. This study was unique by employing remote sensing in cover-cropped vineyards and using protocols for excluding spectral reflectance contributed by inter-row vegetation.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3