Grapevine bunch weight estimation using image-based features: comparing the predictive performance of number of visible berries and bunch area

Author:

Lopes CarlosORCID,Cadima JorgeORCID

Abstract

Recent advances in machine vision technologies have provided a multitude of automatic tools for recognition and quantitative estimation of grapevine bunch features in 2D images. However, converting them into bunch weight (BuW) is still a big challenge. This paper aims to compare the explanatory power of the number of visible berries (#vBe) and the bunch area (BuA) in 2D images, in order to predict BuW. A set of 300 bunches from four grapevine cultivars were picked at harvest and imaged using a digital RGB camera. Then each bunch was manually assessed for several morphological attributes and, from each image, the #vBe was visually assessed while BuA was segmented using manual labelling combined with an image processing software. Single and multiple regression analysis between BuW and the image-based variables were performed and the obtained regression models were subsequently validated with two independent datasets.The high goodness of fit obtained for all the linear regression models indicates that either one of the image-based variables can be used as an accurate proxy of actual bunch weight and that a general model is also suitable. The comparison of the explanatory power of the two image-based attributes for predicting bunch weight showed that the models based on the predictor #vBe had a slightly lower coefficient of determination (R2) than the models based on BuA. The combination of the two image-based explanatory variables in a multiple regression model produced predictor models with similar or noticeably higher R2 than those obtained for single-predictor models. However, adding a second variable produced a higher and more generalised gain in accuracy for the simple regression models based on the predictor #vBe than for the models based on BuA. Our results recommend the use of the models based on the two image-based variables, as they were generally more accurate and robust than the single variable models. When the gains in accuracy produced by adding a second image-based feature are small, the option of using only a single predictor can be chosen; in such a case, our results indicate that BuA would be a more accurate and less cultivar-dependent option than the #vBe.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3