Fungitoxic role of endogenous eugenol in the hybrid grapevine cultivar Baco blanc resistant to <i>Botrytis cinerea</i>

Author:

Hastoy XavierORCID,Franc CélineORCID,Riquier LaurentORCID,Ségur Marie-Claude,De Revel GillesORCID,Fermaud MarcORCID

Abstract

Eugenol (2-methoxy-4-(2-propenyl)-phenol), widely spread in various plants, notably clove, basil and bay, is a well-known antifungal and antibiotic molecule that is abundant in the hybrid grapevine cultivar Baco blanc (Vitis vinifera × Vitis riparia × Vitis labrusca). This variety, created by François Baco (19th century), is confirmed in this study as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. According to two major antibiosis modes of action, i.e., direct or volatile, this study demonstrated the efficiency of eugenol in vitro by also investigating precisely the effect on B. cinerea of small concentrations of eugenol, 3 to 4 ppm, corresponding to IC10. Moreover, the vapour-inhibiting effect was shown to be highly powerful. The total eugenol concentration peaked at the veraison stage, exceeding 1000 μg×kg-1 in the skin of Baco blanc berry under our conditions. At this point, leaf removal in the bunch zone induced a significant increase in eugenol (32 %), from 1118 to 1478 μg×kg-1, which was also associated with a significant decrease in B. cinerea infection in the vineyard. Thus, for the first time, eugenol, as an endogenous molecule of Baco blanc, was clearly demonstrated to be an inducible compound in the vineyard. Furthermore, significant intravarietal variability in eugenol concentrations according to the Baco blanc clone was demonstrated to be associated with significant differences in fruit susceptibility to the plant pathogen assessed in biotests. Interestingly, in keeping with fruit ontogenic resistance, a significant negative correlation was established between the technological maturity of berries and the total eugenol content in the berry skin. Finally, the time-progress study of the two biochemical forms of eugenol (bound vs. free eugenol) allowed us to hypothesise the effectiveness against the plant pathogen of some precursor forms of eugenol, and the corresponding biochemical structures are currently being investigated. Thus, eugenol appears to be a key biochemical marker of ontogenic resistance in the hybrid cultivar Baco blanc.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3