Protection against oxygen in the vinification of the red grape Nerello Mascalese affects volatile organic compounds profile

Author:

Taglieri Isabella,Landi LorenzoORCID,D'Onofrio ClaudioORCID,Fiorino Fabrizio OnofrioORCID,Figoli GabrieleORCID,Thibon CecileORCID,Redon PascalineORCID,Sanmartin Chiara,Darriet PhilippeORCID,Bellincontro AndreaORCID,Mencarelli Fabio

Abstract

We hypothesised that the protection against oxygen (PAO) of must and wine during vinification by avoiding contact with air can preserve the primary volatile organic compounds (VOCs) of Nerello Mascalese. PAO was performed in two seasons (2020 and 2021) using carbon dioxide pellets (CO2,s) and gas (CO2,g), inactivated yeasts and ascorbic acid during fermentation; the control wine was made via traditional vinification without adding the aforementioned components. During fermentation, the two winemaking processes mainly differed in terms of the application of aeration during maceration/fermentation in the pump-over and délestage activities, and the care taken to avoid contact with oxygen during racking. In both years, higher concentrations of polyphenols and total anthocyanins were found in the PAO wine (about 16 % and 20 % respectively). The concentrations of nerol, citronellol and geraniol were significantly higher in the PAO wine in both seasons, albeit with small differences which affected the sensory evaluation. The free/bound terpenes ratio was 0.35 (PAO) and 0.55 (Control). Bound C13-norisoprenoids contents were higher than the free ones; in the PAO wine, free 3-oxo-α-ionol and bound vomifoliol concentrations were slightly higher than in the control wine. Thiols were measured in Nerello for the first time. In 2020 in particular, sulfanylhexan-1-ol was present in larger amounts in the PAO wine. Applying PAO in the production of Nerello Mascalese modified certain VOCs, as well as the overall free/bound ratio due to the increase in bound VOCs, thus influencing the aroma of the wine.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3