Identifying the best parameters to determine genotype capability to retain adequate malic acid at harvest and in final wines

Author:

Frioni TommasoORCID,Collivasone Riccardo,Canavera Ginevra,Gatti MatteoORCID,Gabrielli Mario,Poni StefanoORCID

Abstract

Maintaining optimal grape acidity at harvest is one of the most complicated challenges under climate change pressures, especially in early ripening cultivars. Warming trends are compressing vine phenology and fostering berry malic acid respiration. In this work, over four years, we evaluated yield components and fruit ripening in two local varieties in the Colli Piacentini, Ortrugo (ORT) and Barbesino (BRB). Our goal was to evaluate their ability to maintain satisfying acidity at harvest and understand the limits and features of the genetic control over organic acid degradation during ripening.The two varieties exhibited comparable yield and grape total soluble solids (TSS) accumulation dynamics, but BRB showed consistently higher acidity during the entire ripening process in any of the four years. BRB's higher acidity was linked to higher malic acid concentrations. ORT had earlier onset of malic acid degradation than BRB and lower maximum malic acid degradation rates. Malic acid degradation rates were lower in ORT also later in the season, until harvest. However, correlations built between malic acid degradation rates and instantaneous malic acid concentration revealed that BRB had a consistently lower malic acid loss for values of malate < 10 g/L.Our work demonstrates that there is a genetic control over the malic acid degradation rates exhibited at varying malic acid concentrations and higher acidity at harvest can be found in varieties exhibiting low malic acid degradation rates when malic acid is < 10 g/L. Post-veraison berry growth rates could interact with genotype effects. The analysis of the correlation can be used at different scales to identify cultivars retaining higher acidity at harvest.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3