Abstract
In this paper we prove that several natural approaches to Sobolev spaces coincide on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar-Schoen, the approach by limit of discrete \(p\)-energies and the approach by limit of Sobolev spaces on cable systems all yield the same functional space with equivalent norms for \(p>1\). As a consequence we prove that the Sobolev spaces form a real interpolation scale. We also obtain \(L^p\)-Poincaré inequalities for all values of \(p \ge 1\).
Publisher
Finnish Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献