On the existence of cut points of connected generalized Sierpiński carpets
-
Published:2023-02-13
Issue:1
Volume:48
Page:229-254
-
ISSN:2737-114X
-
Container-title:Annales Fennici Mathematici
-
language:
-
Short-container-title:Ann. Fenn. Math.
Author:
Ruan Huo-Jun,Wang Yang,Xiao Jian-Ci
Abstract
In a previous work joint with Dai and Luo, we show that a connected generalized Sierpiński carpet (or shortly a GSC) has cut points if and only if the associated \(n\)-th Hata graph has a long tail for all \(n\ge 2\). In this paper, we extend the above result by showing that it suffices to check a finite number of those graphs to reach a conclusion. This criterion provides a truly "algorithmic" solution to the cut point problem of connected GSCs. We also construct for each \(m\ge 1\) a connected GSC with exactly \(m\) cut points and demonstrate that when \(m\ge 2\), such a GSC must be of the so-called non-fragile type.
Publisher
Finnish Mathematical Society
Subject
General Mathematics