Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent

Author:

Li Gongbao,Luo Xiao,Yang Tao

Abstract

In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation \(- \left(a+b\int_{{\mathbb{R}^3}} {{{\left| {\nabla u} \right|}^2}}\right) \Delta u=\lambda u+ {| u |^{p - 2}}u+\mu {| u |^{q - 2}}u\) in \(\mathbb{R}^{3}\) under the normalized constraint \(\int_{{\mathbb{R}^3}} {{u}^2}=c^2\), where \(a>0\), \(b>0\), \(c>0\), \(2<q<\frac{14}{3}<p\leq 6\) or \(\frac{14}{3}<q< p\leq 6\), \(\mu>0\) and \(\lambda\in\mathbb{R}\) appears as a Lagrange multiplier. In both cases for the range of \(p\) and \(q\), the Sobolev critical exponent \(p=6\) is involved and the corresponding energy functional is unbounded from below on \(S_c=\{ u \in H^{1}({\mathbb{R}^3})\colon \int_{{\mathbb{R}^3}} {{u}^2}=c^2 \}\). If \(2<q<\frac{10}{3}\) and \(\frac{14}{3}<p<6\), we obtain a multiplicity result to the equation. If \(2<q<\frac{10}{3}<p=6\) or \(\frac{14}{3}<q< p\leq 6\), we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020), which studied the nonlinear Schrödinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term \(({\int_{{\mathbb{R}^3}} {\left| {\nabla u} \right|} ^2}) \Delta u\) appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the \(L^2\)-constraint to recover compactness in the Sobolev critical case.  

Publisher

Finnish Mathematical Society

Subject

General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3