Abstract
In this paper, we study the Schrödinger equation involving \(\frac{N}{s}\)-fractional Laplace as follows
\(\varepsilon^{N}(-\Delta)_{N/s}^{s}u+V(x)|u|^{\frac{N}{s}-2}u=f(u)\) in \(\mathbb R^{N}\),
where \(\varepsilon\) is a positive parameter, \(N=ps\), \(s\in (0,1)\). The nonlinear function \(f\) has the exponential growth and potential function \(V\) is a continuous function satisfying some suitable conditions. Our problem lacks of compactness. By using the Ljusternik-Schnirelmann theory, we obtain the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter.
Publisher
Finnish Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献