Accessible parts of the boundary for domains in metric measure spaces
-
Published:2022-04-20
Issue:2
Volume:47
Page:695-706
-
ISSN:2737-114X
-
Container-title:Annales Fennici Mathematici
-
language:
-
Short-container-title:Ann. Fenn. Math.
Author:
Gibara Ryan,Korte Riikka
Abstract
We prove in the setting of \(Q\)-Ahlfors regular PI-spaces the following result: if a domain has uniformly large boundary when measured with respect to the \(s\)-dimensional Hausdorff content, then its visible boundary has large \(t\)-dimensional Hausdorff content for every \(0<t<s\leq Q-1\). The visible boundary is the set of points that can be reached by a John curve from a fixed point \(z_{0}\in \Omega\). This generalizes recent results by Koskela-Nandi-Nicolau (from \(\mathbb R^2\)) and Azzam (\(\mathbb R^n\)). In particular, our approach shows that the phenomenon is independent of the linear structure of the space.
Publisher
Finnish Mathematical Society