Dimension estimates on circular (s,t)-Furstenberg sets
-
Published:2023-03-27
Issue:1
Volume:48
Page:299-324
-
ISSN:2737-114X
-
Container-title:Annales Fennici Mathematici
-
language:
-
Short-container-title:Ann. Fenn. Math.
Abstract
In this paper, we show that circular \((s,t)\)-Furstenberg sets in \(\mathbb R^2\) have Hausdorff dimension at least
\(\max\{\tfrac{t}3+s,(2t+1)s-t\}\) for all \(0<s,t\le 1\).
This result extends the previous dimension estimates on circular Kakeya sets by Wolff.
Publisher
Finnish Mathematical Society
Subject
General Mathematics