Data Reduction Techniques: A Comparative Study

Author:

AlKarawi Ahmed,AlJanabi Kadhim

Abstract

Data preprocessing in general and data reduction in specific represent the main steps in data mining techniques and algorithms since data in real world due to its vastness, the analysis will take a long time to complete .Almost all mining techniques including classification, clustering, association and others have high time and space complexities due to the huge amount of data and the algorithm behavior itself. That is the reason why data reduction represent an important phase in Knowledge Discovery in Databases (KDD) process. Many researchers introduced important solutions in this field. The study in this paper represents a comparative study for about 22 research papers in data reduction fields that covers different data reduction techniques such as dimensionality reduction, numerisoty reduction, sampling, clustering data cube aggregation and other techniques. From the conducted study, it can be concluded that the appropriate technique that can be used in data reduction is highly dependent on the data type, the dataset size, the application goal, the availability of noise and outliers and the compromise between the reduced data and the knowledge required from the analysis

Publisher

University of Kufa

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3