Role of Diastole in Left Ventricular Function, I: Biochemical and Biomechanical Events

Author:

Villars Penelope S.1,Hamlin Shannan K.1,Shaw Andrew D.1,Kanusky Joseph T.1

Affiliation:

1. University of Texas Health Science Center at Houston (PSV, SKH, JTK) and Department of Critical Care Medicine, University of Texas M.D. Anderson Cancer Center (SKH, ADS), Houston, Tex.

Abstract

Left ventricular diastolic function plays an important role in cardiac physiology. Lusitropy, the ability of the cardiac myocytes to relax, is affected by both biochemical events within the myocyte and biomechanical events in the left ventricle. β-Adrenergic stimulation alters diastole by enhancing the phosphorylation of phospholamban, a substrate within the myocyte that increases the uptake of calcium ions into the sarcoplasmic reticulum, increasing the rate of relaxation. Troponin I, a regulatory protein involved in the coupling of excitation to contraction, is vital to maintaining the diastolic state; depletion of troponin I can produce diastolic dysfunction. Other biochemical events, such as defects in the voltage-sensitive release mechanism or in inositol triphosphate calcium release channels, have also been implicated in altering diastolic tone. Extracellular collagen determines myocardial stiffness; impaired glucose tolerance can induce an increase in collagen cross-linking and lead to higher end-diastolic pressures. The passive properties of the left ventricle are most accurately measured during the diastasis and atrial contraction phases of diastole. These phases of the cardiac cycle are the least affected by volume status, afterload, inherent viscoelasticity, and the inotropic state of the myocardium. Diastolic abnormalities can be conceptualized by using pressure-volume loops that illustrate myocardial work and both diastolic and systolic pressure-volume relationships. The pressure-volume model is an educational tool that can be used to demonstrate isolated changes in preload, afterload, inotropy, and lusitropy and their interaction.

Publisher

AACN Publishing

Subject

Critical Care Nursing,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3