Affiliation:
1. Steklov Mathematical Institute of Russian Academy of Sciences, Department of Mathematical Methods for Quantum Technologies, Moscow, Russia
2. University of Science and Technology MISIS, Moscow, Russia
Abstract
In this work, we study the detailed structure of quantum control landscape for the problem of single-qubit phase shift gate generation on the fast time scale. In previous works, the absence of traps for this problem was proved on various time scales. A special critical point which was known to exist in quantum control landscapes was shown to be either a saddle or a global extremum, depending on the parameters of the control system. However, in case of a saddle,
the numbers of negative and positive eigenvalues of the Hessian at this point and their magnitudes have not been studied. At the same time, these numbers and magnitudes determine the relative ease or difficulty for practical optimization in a vicinity of the critical point. In this work, we compute the numbers of negative and positive eigenvalues of the Hessian at this saddle point and, moreover, give estimates on magnitude of these eigenvalues. We also significantly simplify our previous proof of the theorem about this saddle point of the Hessian
(Theorem 3 in [22]).
Funder
Ministry of Science and Higher Education of the Russian Federation
Publisher
Steklov Mathematical Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献