Affiliation:
1. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Abstract
Квазидифференцирования универсальной обертывающей алгебры $U\mathfrak{gl}_n$ были введены Д. Гуревичем, П. Пятовым и П. Сапоновым при изучении алгебр уравнения отражения; это линейные операторы на $U\mathfrak{gl}_n$, удовлетворяющие определенным алгебраическим условиям, обобщающим тождество Лейбница. Мы показываем, что в результате применения итерированного оператора, равного линейной комбинации квазидифференцирований, к хорошим образующим центра $U\mathfrak{gl}_n$ (симметрированным коэффициентам характеристического многочлена матрицы) получаются коммутирующие элементы. Поcтроенная таким образом алгебра совпадает с квантовой алгеброй Мищенко-Фоменко в $U\mathfrak{gl}_n$, рассмотренной ранее А. А. Тарасовым, Л. Г. Рыбниковым, А. И. Молевым и др.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute