Affiliation:
1. St. Petersburg State University, St. Petersburg,
Russia
Abstract
Обсуждаются квадратичные законы сохранения для уравнений Ньютона и отвечающие им тензоры Киллинга второго порядка в евклидовом пространстве. Полный набор интегралов движения в этом случае состоит из полиномов второго, четвертого, шестого и т. д. порядков по импульсам, которые могут быть построены с помощью матрицы Лакса, связанной с иерархией многокомпонентных нелинейных уравнений Шредингера.
Funder
Russian Science Foundation
Gazprom Neft
Publisher
Steklov Mathematical Institute
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Об инвариантных относительно вращений интегрируемых системах;Известия Российской академии наук. Серия математическая;2024