Affiliation:
1. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Abstract
Изучается класс биллиардов в круге с проскальзыванием на соизмеримый с $\pi$ угол вдоль граничной окружности. Для таких биллиардов показано, что изоэнергетическая поверхность биллиарда гомеоморфна некоторому линзовому пространству $L(q,p)$ с параметрами $0 < p <q$. Множество тех пар $(q, p)$, для которых существует биллиард в круге с проскальзыванием, реализующий соответствующее линзовое пространство $L(q,p)$, описано в терминах множества решений линейного диофантова уравнения с двумя переменными. Полученный результат остается верен для плоских биллиардов с проскальзыванием в односвязных областях с гладкой границей, т.е. не ограничивается интегрируемым случаем.
Библиография: 30 названий.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献