Affiliation:
1. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract
Рассматриваются системы с торическим конфигурационным пространством и кинетической энергией в виде "плоской" римановой метрики на торе. Потенциальная энергия $V$ - гладкая функция на конфигурационном торе. Динамика таких систем описывается "натуральными" гамильтоновыми системами дифференциальных уравнений. Если заменить $V$ на $\varepsilon V$, где $\varepsilon$ - малый параметр, то исследование таких гамильтоновых систем при малых значениях $\varepsilon$ относится к "основной проблеме динамики" по Пуанкаре. Обсуждается известная гипотеза об однозначных полиномиальных по импульсам интегралах уравнений движения: если имеется полиномиальный по импульсам интеграл степени $m$, то обязательно найдется линейный или квадратичный по импульсам первый интеграл. Эта гипотеза полностью доказана для $m=3$ и $m=4$. Обсуждаются случаи "высших" степеней, когда $m=5$ и $m=6$. Следуя теории возмущений гамильтоновых систем, вводятся резонансные прямые на плоскости импульсов. Если система допускает полиномиальный интеграл, то число этих прямых конечно. Найдены симметрии множества резонансных прямых, что дает, в частности, необходимые условия интегрируемости. Получены некоторые новые критерии существования однозначных полиномиальных интегралов.
Библиография: 11 наименований.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute