On extensibility and qualitative properties of solutions to Riccati's equation

Author:

Astashova Irina Viktorovna12,Nikishov Vladimir Andreevich1

Affiliation:

1. Lomonosov Moscow State University

2. Plekhanov Russian State University of Economics

Abstract

We consider Riccati's equation on the real axis with continuous coefficients and non-negative discriminant of the right-hand side. We study the extensibility of its solutions to unbounded intervals. We obtain asymptotic formulae for its solutions in their dependence on the initial values and the properties of the functions representing roots of the right-hand side of the equation. We obtain results on the asymptotical behaviour of solutions defined near $\pm\infty$. We study the structure of the set of bounded solutions in the case when the roots of the right-hand side of the equation are $C^1$-functions which are different on the whole of their domain and tend monotonically to some limits as $x\to\pm\infty$. We extend, improve, or refine some well-known results. Bibliography: 47 titles.

Funder

Russian Science Foundation

Publisher

Steklov Mathematical Institute

Reference49 articles.

1. Elements of the theory of gravitational waves

2. Nonclassical Regularization of the Multicomponent Euler System

3. A multifactor volatility Heston model

4. Parametrization of the regulator of multicontour stabiliazation of the isolation diameter and the capacitance of one meter of twisted pair cabling;D. A. Smorodinov;Zh. Nauchn. Publikatsii Aspirantov i Doktorantov,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3