Affiliation:
1. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
2. Moscow Center for Fundamental and Applied Mathematics
Abstract
Обобщается теорема Майкла о непрерывной выборке из многозначных необязательно выпуклозначных отображений. Рассматриваются классические задачи аппроксимации на конус-пространствах для симметричных и несимметричных полунорм. В частности, изучаются условия, гарантирующие существование непрерывной выборки для выпуклых множеств в несимметричных пространствах. На полулинейном пространстве ограниченных выпуклых множеств с полуметрикой Хаусдорфа решается задача о чебышeвском центре для ограниченных семейств этих множеств.
Библиография: 24 наименования.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献