О выпуклом многограннике в правильной системе точек

Author:

Штогрин Михаил Иванович1,Shtogrin Mikhail Ivanovich2

Affiliation:

1. Математический институт им. В. А. Стеклова Российской академии наук, г. Москва

2. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract

Огранка с "начинкой". Идеальная кристаллическая структура состоит из конечного числа равных и параллельных трансляционных точечных решеток. В $\mathbb R^3$ она простирается неограниченно во всех направлениях. Выделим в ней конечную часть, расположенную в замкнутом выпуклом многограннике, каждая грань которого содержит не принадлежащие одной прямой узлы трансляционной точечной решетки, входящей в структуру. Такой многогранник называют возможной огранкой идеальной кристаллической структуры. Широко известны 32 кристаллических класса, или 32 кристаллографические точечные группы. Среди них находится группа симметрии возможной огранки, вычисленная с учетом принадлежащих ей узлов идеальной кристаллической структуры. Циклическая подгруппа $C_n$ группы симметрии любой возможной огранки имеет порядок $n\le 4$ или $n=6$. Огранка без "начинки". В настоящей работе построены две кристаллические структуры, в каждой из которых имеется такой кристаллический многогранник, группа симметрии которого, вычисленная без учета принадлежащих ему узлов кристаллической структуры, обладает поворотной осью порядка $n=8$ или $n=12$ соответственно. В обоих случаях кристаллический многогранник является прямой призмой конечной высоты. Без учета внутреннего строения возможная огранка кристаллической структуры в трехмерном евклидовом пространстве не может обладать поворотной осью другого порядка $n$ при условии $6<n<\infty$. Предлагаемые построения сопровождаются подробными исследованиями идеальных кристаллических структур, а также множеств Делоне $S$ типа $(r, R)$ в $\mathbb R^2$ и $\mathbb R^3$. В частности, предъявлено развернутое доказательство одной из теорем, сформулированной в 2010 г. на Международной конференции, посвященной 120-летию со дня рождения Б. Н. Делоне. Библиография: 31 наименование.

Publisher

Steklov Mathematical Institute

Reference43 articles.

1. Grundlehren Math. Wiss.;D. Hilbert, S. Cohn-Vossen,1932

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3