Affiliation:
1. Moscow Center for Fundamental and Applied Mathematics
2. Samara National Research University
3. Lomonosov Moscow State University
4. Bahçesehir University, Istanbul, Turkey
Abstract
Основная цель обзора состоит в представлении результатов последнего десятилетия по описанию подпространств как $L_p$-пространств и пространств Орлича, так и общих симметричных пространств, порожденных независимыми функциями. Предлагается новый подход, основанный на использовании комбинации результатов теории симметричных пространств, методов теории интерполяции операторов и некоторых вероятностных идей. Изучается проблема единственности распределения функции, последовательность независимых копий которой порождает данное подпространство. Доказан общий принцип сравнения дополняемости подпространств, порожденных последовательностями независимых функций в симметричном пространстве на $[0,1]$ и их попарно дизъюнктных копий в некотором пространстве на полуоси $(0,\infty)$, одним из следствий которого является классическая теорема Дора-Стабеда о дополняемости подпространств $L_p$-пространств.
Библиография: 103 названия.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute