Affiliation:
1. Yerevan State University, Yerevan, Republic of Armenia
Abstract
We prove some uniqueness theorems for series in general Franklin systems. In particular, for series in the classical Franklin system our result asserts that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$ converge in measure to an integrable function $f$ and $\sup_i|S_{n_i}(x)|<\infty$, for $x\notin B$, where $B$ is some countable set and $\sup_i(n_i/n_{i-1})<\infty$, then this is the Fourier-Franklin series of $f$.
Bibliography: 29 titles.
Funder
Ministry of Education, Science, Culture and Sports RA, Science Committee
Publisher
Steklov Mathematical Institute
Reference29 articles.
1. Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen
2. Series in the Haar system;F. G. Arutyunyan;Dokl. Akad. Nauk Arm. SSR,1966
3. Null series in the Haar system and uniqueness sets;M. B. Petrovskaya;Izv. Akad. Nauk SSSR Ser. Mat.,1964
4. A Cantor-type theorem for the Haar system;V. A. Skvortsov;Vestn. Moskov. Univ. Ser. 1 Mat. Mekh.,1964