Hausdorff distances between couplings and optimal transportation

Author:

Bogachev Vladimir Igorevich12,Popova Svetlana Nikolaevna31

Affiliation:

1. National Research University Higher School of Economics, Moscow, Russia

2. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

3. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

Abstract

We consider optimal transportation of measures on metric and topological spaces in the case where the cost function and marginal distributions depend on a parameter with values in a metric space. The Hausdorff distance between the sets of probability measures with prescribed marginals is estimated in terms of the distances between the marginals themselves. This estimate is used to prove the continuity of the cost of optimal transportation with respect to the parameter in the case of the continuous dependence of the cost function and marginal distributions on this parameter. Existence of approximate optimal plans continuous with respect to the parameter is established. It is shown that the optimal plan is continuous with respect to the parameter in the case of uniqueness. However, examples are constructed when there is no continuous selection of optimal plans. Another application of the estimate for the Hausdorff distance concerns discrete approximations of the transportation problem. Finally, a general result on the convergence of Monge optimal mappings is proved. Bibliography: 46 titles.

Funder

Russian Science Foundation

Publisher

Steklov Mathematical Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3