Affiliation:
1. National Research University Higher School of
Economics in Nizhnii Novgorod, Nizhnii Novgorod, Russia
2. Lobachevski State University of Nizhni Novgorod, Nizhnii Novgorod,
Russia
Abstract
Рассмотрены 3-диффеоморфизмы Морса-Смейла, неблуждающее множество которых состоит в точности из четырех неподвижных точек с попарно различными индексами Морса. На сегодняшний день открытым является вопрос о том, какие замкнутые 3-многообразия допускают такие диффеоморфизмы. Известно, что множество этих многообразий содержит все линзовые пространства. Более того, на всех многообразиях, кроме $\mathbb{S}^2\times\mathbb{S}^1$, рассматриваемые диффеоморфизмы имеют гетероклинические кривые. Установлено, что число гетероклинических кривых диффеоморфизма на заданном многообразии можно минимизировать, сведя его к конечному числу некомпактных гетероклинических кривых, являющихся ориентируемым пересечением инвариантных седловых многообразий. Полученный результат позволит в дальнейшем дать исчерпывающее описание замкнутых 3-многообразий, допускающих рассматриваемые диффеоморфизмы.
Funder
Russian Science Foundation
Ministry of Science and Higher Education of the Russian Federation
Publisher
Steklov Mathematical Institute
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献