Averaging and mixing for stochastic perturbations of linear conservative systems

Author:

Huang Guan12,Kuksin Sergei Borisovich23ORCID

Affiliation:

1. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China

2. Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

3. Universite Paris-Diderot (Paris 7), UFR de Mathematiques, Paris, France

Abstract

We study stochastic perturbations of linear systems of the form \begin{equation} dv(t)+Av(t) dt =\varepsilon P(v(t)) dt+\sqrt{\varepsilon} \mathcal{B}(v(t)) dW (t), \qquad v\in\mathbb{R}^D, \tag{*} \end{equation} where $A$ is a linear operator with non-zero imaginary spectrum. It is assumed that the vector field $P(v)$ and the matrix function $\mathcal{B}(v)$ are locally Lipschitz with at most polynomial growth at infinity, that the equation is well-posed and a few of first moments of the norms of solutions $v(t)$ are bounded uniformly in $\varepsilon$. We use Khasminski's approach to stochastic averaging to show that, as $\varepsilon\to0$, a solution $v(t)$, written in the interaction representation in terms of the operator $A$, for $0\leqslant t\leqslantConst\cdot\varepsilon^{-1}$ converges in distribution to a solution of an effective equation. The latter is obtained from $(*)$ by means of certain averaging. Assuming that equation $(*)$ and/or the effective equation are mixing, we examine this convergence further. Bibliography: 27 titles.

Funder

Ministry of Science and Higher Education of the Russian Federation

National Natural Science Foundation of China

Publisher

Steklov Mathematical Institute

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3