Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable

Author:

Alkousa Mohammad Soud1,Gasnikov Alexander Vladimirovich2341,Gladin Egor Leonidovich5,Kuruzov Ilya Alekseevich1,Pasechnyuk Dmitry Arkad'evich1,Stonyakin Fedor Sergeevich61

Affiliation:

1. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

2. Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia

3. Caucasus Mathematical Center, Adyghe State University, Maikop, Russia

4. Research Center for Trusted Artificial Intelligence, Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia

5. Humboldt-Universitat zu Berlin, Berlin, Germany

6. V. I. Vernadsky Crimean Federal University, Simferopol, Russia

Abstract

Algorithmic methods are developed that guarantee efficient complexity estimates for strongly convex-concave saddle-point problems in the case when one group of variables has a high dimension, while another has a rather low dimension (up to 100). These methods are based on reducing problems of this type to the minimization (maximization) problem for a convex (concave) functional with respect to one of the variables such that an approximate value of the gradient at an arbitrary point can be obtained with the required accuracy using an auxiliary optimization subproblem with respect to the other variable. It is proposed to use the ellipsoid method and Vaidya's method for low-dimensional problems and accelerated gradient methods with inexact information about the gradient or subgradient for high-dimensional problems. In the case when one group of variables, ranging over a hypercube, has a very low dimension (up to five), another proposed approach to strongly convex-concave saddle-point problems is rather efficient. This approach is based on a new version of a multidimensional analogue of Nesterov's method on a square (the multidimensional dichotomy method) with the possibility to use inexact values of the gradient of the objective functional. Bibliography: 28 titles.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Steklov Mathematical Institute

Subject

Algebra and Number Theory

Reference34 articles.

1. Ускоренные методы для седловых задач

2. Accelerated Methods for Saddle-Point Problem

3. A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games;W. Azizian, I. Mitliagkas, S. Lacoste-Julien and G. Gidel,2020

4. Stochastic gradient methods with inexact oracle;A. V. Gasnikov, P. E. Dvurechensky and Yu. E. Nesterov;Tr. Mosk. Fiz. Tekhn. Inst.,2016

5. Ускоренный метаалгоритм для задач выпуклой оптимизации

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3