On adjacency operators of locally finite graphs

Author:

Trofimov Vladimir Ivanovich123

Affiliation:

1. N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

2. Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

3. Ural Mathematical Center

Abstract

A graph $\Gamma$ is called locally finite if, for each vertex $v\in \Gamma$, the set $\Gamma(v)$ of its adjacent vertices is finite. For an arbitrary locally finite graph $\Gamma$ with vertex set $V(\Gamma)$ and an arbitrary field $F$, let $F^{V(\Gamma)}$ be the vector space over $F$ of all functions $V(\Gamma) \to F$ (with natural componentwise operations) and let $A^{(\mathrm{alg})}_{\Gamma,F}$ be the linear operator $F^{V(\Gamma)} \to F^{V(\Gamma)}$ defined by $(A^{(\mathrm{alg})}_{\Gamma,F}(f))(v) = \sum_{u \in \Gamma(v)}f(u)$ for all $f \in F^{V(\Gamma)}$, $v \in V(\Gamma)$. In the case of a finite graph $\Gamma$, the mapping $A^{({\mathrm{alg}})}_{\Gamma,F}$ is the well-known operator defined by the adjacency matrix of the graph $\Gamma$ (over $F$), and the theory of eigenvalues and eigenfunctions of such operators is a well developed part of the theory of finite graphs (at least, in the case $F = \mathbb{C}$). In the present paper, we develop the theory of eigenvalues and eigenfunctions of the operators $A^{({\mathrm{alg}})}_{\Gamma,F}$ for infinite locally finite graphs $\Gamma$ (however, some results that follow may present certain interest for the theory of finite graphs) and arbitrary fields $F$, even though in the present paper special emphasis is placed on the case of a connected graph $\Gamma$ with uniformly bounded degrees of vertices and $F = \mathbb{C}$. The previous attempts in this direction were not, in the author's opinion, quite satisfactory in the sense that they have been concerned only with eigenfunctions (and corresponding eigenvalues) of rather special type.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Steklov Mathematical Institute

Reference19 articles.

1. Pure Appl. Math.;D. Cvetković, M. Doob, and H. Sachs,1980

2. Spectra of Graphs

3. The spectrum of an infinite graph

4. A Survey on Spectra of infinite Graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3