Affiliation:
1. Механико-математический факультет, Московский государственный университет имени М.В. Ломоносова, Москва, Россия
2. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
Abstract
В торической топологии для каждого $n$-мерного комбинаторного простого многогранника $P$ с $m$ гипергранями определяется $(m+n)$-мерное момент-угол-многообразие $\mathcal Z_P$ с действием компактного тора $T^m$ таким, что $\mathcal Z_P/T^m$ является выпуклым многогранником, комбинаторно эквивалентным $P$. Простой $n$-мерный многогранник $P$ называется $B$-жестким, если из существования изоморфизма градуированных колец $H^*(\mathcal Z_P,\mathbb Z)= H^*(\mathcal Z_Q,\mathbb Z)$ для простого $n$-мерного многогранника $Q$ следует комбинаторная эквивалентность $P$ и $Q$. Идеальный почти погореловский многогранник - это комбинаторный трехмерный многогранник, получаемый срезкой всех бесконечно удаленных вершин идеального прямоугольного многогранника в пространстве Лобачевского (гиперболическом пространстве) $\mathbb L^3$. Это в точности многогранники, получаемые из произвольных (не обязательно простых) трехмерных многогранников срезкой всех вершин и срезкой всех "старых" ребер получившегося многогранника. Граница двойственного многогранника является барицентрическим подразбиением границы старого многогранника (а также двойственного к нему). В работе доказано, что любой идеальный почти погореловский многогранник является $B$-жестким. Семейство многообразий называется когомологически жестким над кольцом $R$, если два многообразия из семейства диффеоморфны тогда и только тогда, когда их градуированные кольца когомологий над $R$ изоморфны. Как следствие, возникают три когомологически жестких семейства многообразий над идеальными почти погореловскими многогранниками: момент-угол-многообразия, канонические шестимерные квазиторические многообразия над $\mathbb Z$ или любым полем и канонические трехмерные малые накрытия над $\mathbb Z_2$. Последние два класса многообразий известны как многообразия, индуцированные из линейной модели.
Funder
Russian Foundation for Basic Research
Publisher
Steklov Mathematical Institute
Subject
General Materials Science
Reference63 articles.
1. О выпуклых многогранниках в пространствах Лобачевского;Андреев Е.М.;Мат. сб.,1970
2. ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES
3. О выпуклых многогранниках конечного объема в пространстве Лобачевского;Андреев Е.М.;Мат. сб.,1970
4. ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE
5. On generating planar graphs