Нули, оценки и асимптотики для ортогональных полиномов на единичной окружности

Author:

Любински Дорон Шауль1,Lubinsky Doron Shaul1

Affiliation:

1. School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Пусть $\mu $ - мера на единичной окружности, регулярная в смысле Шталя, Тотика и Ульмана. Пусть $\{\varphi_{n}\} $ - ортонормированные полиномы относительно веса $\mu $ и $z_{jn}\} $ - их нули. Предположим, что $\mu $ абсолютно непрерывна на дуге $\Delta $ единичной окружности, причем $\mu'$ положительна и непрерывна на этой дуге. Мы показываем, что равномерная ограниченность ортонормированных полиномов на дугах $\Gamma $, содержащихся в дуге $\Delta $, равносильна определенному асимптотическому поведению нулей этих полиномов внутри секторов, опирающихся на $\Gamma $. Аналогично, выполнение равномерного предельного соотношения $\lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1$ равносильно наличию соответствующих асимптотик для нулей в таких секторах. Библиография: 27 названий.

Funder

National Science Foundation

Publisher

Steklov Mathematical Institute

Subject

General Medicine

Reference36 articles.

1. О возможном росте многочленов ортогональных с непрерывным положительным весом;М. У. Амброладзе;Матем. заметки,1989

2. О возможной скорости роста многочленов, ортогональных с непрерывным положительным весом;М. У. Амброладзе;Матем. сб.,1991

3. ON THE POSSIBLE RATE OF GROWTH OF POLYNOMIALS ORTHOGONAL WITH A CONTINUOUS POSITIVE WEIGHT

4. Проблема В.А. Стеклова об оценке роста ортогональных многочленов

5. V.A. Steklov’s problem of estimating the growth of orthogonal polynomials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3