Оператор Шредингера в полуплоскости с условием Неймана на границе и сингулярным $\delta$-потенциалом, сосредоточенным на двух лучах, и системы функционально-разностных уравнений
-
Published:2022-10-29
Issue:2
Volume:213
Page:287-319
-
ISSN:0564-6162
-
Container-title:Teoreticheskaya i Matematicheskaya Fizika
-
language:ru
-
Short-container-title:TMF
Author:
Лялинов Михаил Анатольевич1,
Lyalinov Mikhail Anatol'evich2
Affiliation:
1. Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
2. St. Petersburg State University, St. Petersburg,
Russia
Abstract
Изучается асимптотика по расстоянию для собственной функции оператора Шредингера в полуплоскости с сингулярным $\delta$-потенциалом с носителем, сосредоточенным на двух лучах. Оператор такого типа встречается в задачах рассеяния трех одномерных квантовых частиц с точечным парным взаимодействием при некоторых дополнительных ограничениях, а также в задачах дифракции волн в клиновидных и конусовидных областях. С помощью представления Конторовича-Лебедева задача построения собственной функции оператора сводится к изучению системы однородных функционально-разностных уравнений с характеристическим (спектральным) параметром. Изучены свойства решений такой системы однородных функционально-разностных уравнений второго порядка с потенциалом из специального класса. В зависимости от значений характеристического параметра в уравнениях описаны их нетривиальные решения, собственные функции уравнения. Исследование этих решений основано на сведении системы к интегральным уравнениям с самосопряженным ограниченным оператором, который является вполне непрерывным возмущением матричного оператора Мeлера. Предложены достаточные условия существования дискретного спектра правее существенного для возмущенного оператора Мeлера. Изучены условия конечности дискретного спектра. Эти результаты применяются в рассматриваемой задаче в полуплоскости. С помощью перехода от представления Конторовича-Лебедева к интегральному представлению Зоммерфельда построена асимптотика по расстоянию собственной функции рассматриваемого оператора Шредингера.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Subject
General Earth and Planetary Sciences,General Environmental Science