О скорости сходимости в локальной теореме восстановления для марковского случайного блуждания

Author:

Bakai Gavriil Andreevich1

Affiliation:

1. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract

Пусть последовательность случайных величин $\{X_n\}_{n\geqslant 0}$ представляет собой однородную неразложимую цепь Маркова с конечным множеством состояний. Предположим, что случайные величины $\xi_n$, $n\in\mathbb{N}$, определены на переходах цепи. Положим $S_0:=0$, $S_n:=\xi_1+…+ \xi_n$, $n\in\mathbb{N}$, и введем функцию восстановления $$ u_k:=\sum_{n=0}^{+\infty} \mathsf P(S_n=k), \qquad k\in\mathbb{N}. $$ В работе показано, что функция восстановления сходится к своему пределу с экспоненциальной скоростью, и дано явное описание показателя экспоненты. Библиография: 8 названий.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Steklov Mathematical Institute

Reference8 articles.

1. Renewal Theory for Functionals of a Markov Chain with General State Space

2. On the Markov renewal theorem

3. К теории марковского восстановления;В. М. Шуренков;Теория вероятн. и ее примен.,1984

4. Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks

5. Exponential rate-of-convergence estimate in the renewal theorem for random variables given on a Markov chain;A. E. Zaslavskii;Mathematical transactions of the Academy of Sciences of the Lithuanian SSR,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3