Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees

Author:

Kozlov Valery Vasil'evich1

Affiliation:

1. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract

We consider systems with toric configuration space and kinetic energy in the form of a "flat" Riemannian metric on the torus. The potential energy $V$ is a smooth function on the configuration torus. The dynamics of such systems is described by "natural" Hamiltonian systems of differential equations. If $V$ is replaced by $\varepsilon V$, where $\varepsilon$ is a small parameter, then the study of such Hamiltonian systems for small $\varepsilon$ is a part of the "main problem of dynamics" according to Poincaré. We discuss the well-known conjecture on the existence of single-valued momentum-polynomial integrals of motion equations: if there is a momentum-polynomial integral of degree $m$, then there exist a momentum-linear or momentum-quadratic integral. This conjecture was verified in full generality for $m=3$ and $m=4$. We study the cases of "higher" degrees $m=5$ and $m=6$. Similarly to the theory of perturbations of Hamiltonian systems, we introduce resonance lines on the momentum plane. If a system admits a polynomial integral, then the number of these lines is finite. The symmetries of the set of resonance lines are found, from which, in particular, necessary conditions for integrability are derived. Some new criteria for the existence of single-valued polynomial integrals are obtained.

Funder

Russian Science Foundation

Publisher

Steklov Mathematical Institute

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3