Affiliation:
1. Bashkir State University, Ufa, Russia
2. Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa, Russia
Abstract
Предложен алгоритм поиска операторов рекурсии для нелинейных интегрируемых уравнений. Обнаружено, что оператор рекурсии $R$ можно выразить как отношение вида $R=L_1^{-1}L_2$, где линейные дифференциальные операторы $L_1$ и $L_2$ выбраны таким образом, что обыкновенное дифференциальное уравнение $(L_2-\lambda L_1)U=0$ совместно с линеаризацией заданного нелинейного интегрируемого уравнения при любом значении параметра $\lambda\in \mathbb{C}$. Для построения оператора $L_1$ используются инвариантные многообразия, являющиеся обобщением симметрии. Для поиска $L_2$ берется вспомогательное линейное уравнение, связанное с линеаризованным уравнением при помощи преобразования Дарбу. Отметим, что уравнение $L_1\widetilde{U}=L_2U$ задает преобразование Беклунда, переводящее решение $U$ линеаризованного уравнения в другое решение $\widetilde{U}$ этого же уравнения. Отмечена связь инвариантного многообразия с парами Лакса и уравнениями Дубровина.
Publisher
Steklov Mathematical Institute
Subject
General Earth and Planetary Sciences,General Environmental Science