On eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential

Author:

Lyalinov Mikhail Anatol'evich1

Affiliation:

1. Saint Petersburg State University, St. Petersburg, Russia

Abstract

We are concerned with generalized eigenfunctions of the continuous (essential) spectrum for the Schrödinger operator with singular $\delta$-potential that has support on the sides of an angle in the plane. Operators of this kind appear in quantum-mechanical models for quantum state destruction of two point-interacting quantum particles of which one is reflected by a potential barrier. We propose an approach capable of constructing integral representations for eigenfunctions in terms of the solution of a functional-difference equation with spectral parameter. Solutions of this equation are studied by reduction to an integral equation, with the subsequent study of the spectral properties of the corresponding integral operator. We also construct an asymptotic formula for the eigenfunction at large distances. For this formula a physical interpretation from the point of view of wave scattering is given. Our approach can be used to deal with eigenfunctions in a broad class of related problems for the Schrödinger operator with singular potential. Bibliography: 17 titles.

Funder

Russian Science Foundation

Publisher

Steklov Mathematical Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3