SKIN LESION CLASSIFICATION FROM DERMOSCOPY AND CLINICAL IMAGES WITH A DEEP LEARNING APPROACH

Author:

Korfiati Aigli, ,Livanos Giorgos,Konstandinou Christos,Georgiou Sophia,Sakellaropoulos George, , , ,

Abstract

Computer-aided diagnosis (CAD) systems based on deep learning approaches are now feasible due to the availability of big data and the availability of powerful computational resources.The medical image-based CAD systems are of great interest in numerous diseases, but especially for skin cancer diagnosis, deep learning models have been mostly developed for dermoscopy images. Models for clinical images are few, mainly due to the unavailability of big volumes of relevant data. However, CAD systems able to classify skin lesions from clinical images would be of great valueboth for the population and clinicians as an initial early screening of lesions that would leadpatients to visiting a dermatologist in case of suspicious lesions. This is even more pronounced in areas where there is lack of dermoscopy instruments. Thus, in this paper, we aimed to build a classifier based on bothdermoscopy and clinical images able to discriminate skin cancer from skin lesions. The classification is made among three benign and two malignant categories, which include Nevus, Benign but not nevus, Benign but suspicious for malignancy, Melanoma and Non-Melanocytic Carcinoma.The proposed deep learning classifier achieves an Area Under Curve ranging between 0.75 and 0.9 for the five examined categories.

Publisher

International Journal Of Advanced Research

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3