A Machine Learning Approach for Simultaneous Classification of Material Types and Cracks

Author:

MİNTEMUR Ömer1ORCID

Affiliation:

1. Ankara Yıldırım Beyazıt Üniversitesi

Abstract

Exterior structures are susceptible to deformation, which can manifest as cracks on the surface. Deformations that occur on surfaces subjected to daily human use can exacerbate rapidly, potentially leading to irreversible structural damage. They have a potential to result in fatalities. Thus, continuous inspection of these deformations is of invaluable importance. In addition, the identification of the materials comprising the structures is essential to facilitate the implementation of appropriate precautionary measures. However, the inspections are hard to maintain with a solely human workforce. More advanced actions can be taken thanks to the developments in technology. Machine Learning methods could be used in this area where human workforce is ineffective. In this regard, an end-to-end Machine Learning approach was proposed in this study. The power of classical feature extraction methods and Artificial Neural Networks were combined to detect cracks and material of the surface simultaneously. The 2D Discrete Wavelet Transform and statistical properties gained from Gray Level Co-Occurrence Matrix were utilized in the feature extraction mechanism, and an ANN structure was designed. The findings of the study indicate that the proposed mechanism achieved an acceptable level of accuracy for recognizing the structural deformations, despite the challenges posed by the complexity of the problem.

Publisher

International Conference on Artificial Intelligence and Applied Mathematics in Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3