Explosive Quadriceps Strength Symmetry and Landing Mechanics Limb Symmetry After Anterior Cruciate Ligament Reconstruction in Females

Author:

Huang Yu-Lun1,Mulligan Colin M. S.2,Johnson Sam T.2,Pollard Christine2,Hannigan Kim2,Stutzenberger Lyndsay3,Norcross Marc F.2

Affiliation:

1. Department of Physical Education, College of Sports and Recreation, National Taiwan Normal University, Taipei

2. School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis

3. School of Physical Therapy, George Fox University, Newberg, OR

Abstract

Context Emerging evidence suggests that a lower quadriceps rate of torque development (RTD) after anterior cruciate ligament (ACL) reconstruction (ACLR) may be associated with altered landing mechanics. However, the influence of quadriceps RTD magnitude and limb symmetry on landing mechanics limb symmetry remains unknown. Objective To assess the influence of quadriceps RTD magnitude and limb symmetry on limb symmetry in sagittal-plane landing mechanics during functional landing tasks in females with or without ACLR. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants A total of 19 females with ACLR (age = 19.21 ± 1.81 years, height = 164.12 ± 6.97 cm, mass = 63.79 ± 7.59 kg, time after surgery = 20.05 ± 9.50 months) and 19 females serving as controls (age = 21.11 ± 3.28 years, height = 167.26 ± 7.26 cm, mass = 67.28 ± 9.25 kg). Main Outcome Measure(s) Landing mechanics were assessed during a double-legged (DL) jump-landing task, a single-legged jump-landing task, and a side-cutting task. Quadriceps RTD was collected during isometric muscle contractions. Separate stepwise multiple linear regression models were used to determine the variance in limb symmetry in the sagittal-plane knee moment at initial contact, peak vertical ground reaction force, and loading rate that could be explained by quadriceps RTD magnitude or limb symmetry, group (ACLR or control), and their interaction. Results In the ACLR group, greater limb symmetry in quadriceps RTD was associated with greater symmetry in sagittal-plane knee moment at initial contact during the DL task (P = .004). Peak vertical ground reaction force and loading rate could not be predicted by quadriceps RTD magnitude or limb symmetry, group, or their interaction during any task. Conclusions Developing greater symmetry but not magnitude in quadriceps RTD likely enabled more symmetric sagittal-plane knee landing mechanics during the DL task in the ACLR group and thus may reduce the risk of a second ACL injury. Such a protective effect was not found during the single-legged or side-cutting tasks, which may indicate that these tasks do not allow for the compensatory landing mechanism of shifting load to the uninvolved limb that was possible during the DL task.

Publisher

Journal of Athletic Training/NATA

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3