Combining Anthropometry and Bioelectrical Impedance to Predict Body Fat in Female Athletes

Author:

Foote Douglas M.1,Berkelhammer Max,Marone Jane2,Horswill Craig A.2

Affiliation:

1. 1Department of Human Physiology, University of Oregon; dfoote@uoregon.edu

2. 3Department of Kinesiology & Nutrition, University of Illinois at Chicago; janem@uic.edu and

Abstract

Abstract Context: Accurate methods for predicting percent body fat in female athletes are needed for those who lose weight for competition. Methods mandated by sports-governing bodies for minimal weight determination in such athletes lack validation. Objective: To determine whether combining anthropometry (skinfolds, SF) and bioelectrical impedance analysis (BIA) in a 3 component model (3C) would improve the prediction of percentage body fat (%Fat) in female athletes. Secondarily, the Slaughter skinfold equation was evaluated. We hypothesized that compared to outcomes for SF or BIA alone, 3C-determined %Fat would not differ from our criterion method (accuracy) and would be a stronger predictor (higher r2) of the criterion. Design: Cross sectional. Setting: Laboratory-based study during the pre-season for collegiate sport. Participants: Female athletes (n=18 D1 NCAA) recruited from swim and gymnastic teams. Main Outcome Variables: %Fat based on a four-compartment (4C) criterion incorporating body density (air displacement plethysmography), total body water (D2O dilution), and bone mineral mass (DEXA) compared to predicted %Fat using SF alone (Slaughter equation), bioelectrical impedance analysis (single frequency for TBW estimate) and combined skinfolds and BIA (3C). Results: Regression revealed that for %Fat using the criterion 4C, the highest adjusted coefficient of determination and lowest prediction error (r2 ±standard error of estimate) was 3C (r2=0.87 ±2.8%) followed by BIA (r2=0.80 ±3.5%) and SF (r2=0.76 ± 3.8%) (for all, p<0.05). Means differed for %Fat determined using BIA (26.6 ±7.5) and 3C (25.5 ±7.2) vs. the 4C (23.5 ±7.4) (ANOVA and post hoc p<0.05). The SF estimate (24.0 +7.8) did not differ from the 4C value. Conclusions: Combining SF and BIA might improve the prediction and lower the prediction error for determining %Fat in female athletes compared to SF or BIA separately. Regardless, the Slaughter skinfold equation appeared accurate for determining the mean %Fat in these female athletes.

Publisher

Journal of Athletic Training/NATA

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3