Texture Analysis of CT Images in Head and Neck Tumors Differentiation

Author:

Khodjibekova Yu. M.1ORCID,Khodjibekov M. Kh.2ORCID,Akhmedov B. R.2ORCID,Pattokhov A. Sh.2ORCID,Nigmatdjanov A. S.2ORCID

Affiliation:

1. Tashkent State Dental Institute

2. Tashkent Medical Academy

Abstract

Objective: to determine the diagnostic significance of computed tomography texture analysis (CTTA) in differentiating head and neck tumors.Material and methods. The study included 118 patients aged from 4 to 80 years with a verified diagnosis of benign and malignant (37 and 81, respectively) head and neck tumors. CTTA was performed using the LIFEx program, version 6.30. Thirty eight (38) texture indices extracted from routine CT images were tested by regression analysis with creation of logistic texture models with associations of four indices as independent predictors.Results. The possibility of using derived models – probability textural indices for benign and malignant tumors differentiation was established: area under ROC-curve (AUC) 0.854 ± 0.035 (p < 0.001); for differentiation of locally spread from locally limited tumors: AUC 0.840 ± 0.049 (p < 0.001); for differentiation of moderately, poorly, and undifferentiated cancer (G2, G3, G4) from well-differentiated (G1) head and neck cancer: AUC 0.826 ± 0.085 (p < 0.001).Conclusion. CT images texture analysis allows to make non-invasive prognosis of benign or malignant nature of a visualized head and neck tumor, as well as to determine the extent and degree of tumor malignancy.

Publisher

Luchevaya Diagnostika

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3