Abstract
The unfolding of detector effects is crucial for the comparison of data to theory predictions. While traditional methods are limited to representing the data in a low number of dimensions, machine learning has enabled new unfolding techniques while retaining the full dimensionality. Generative networks like invertible neural networks~(INN) enable a probabilistic unfolding, which map individual data events to their corresponding unfolded probability distribution. The accuracy of such methods is however limited by how well simulated training samples model the actual data that is unfolded. We introduce the iterative conditional INN (IcINN) for unfolding that adjusts for deviations between simulated training samples and data. The IcINN unfolding is first validated on toy data and then applied to pseudo-data for the pp \to Z \gamma \gammapp→Zγγ process.
Funder
Bundesministerium für Bildung und Forschung
Centre National de la Recherche Scientifique
Institut National de Physique Nucléaire et de Physique des Particules
Sorbonne Université
Université de Paris
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献